Выбор зелёных технологий в складской логистике – многокритериальный подход

Авторы

  • Никита Анатольевич Осинцев Магнитогорский государственный технический университет image/svg+xml Автор
  • Александр Нельевич Рахмангулов Магнитогорский государственный технический университет image/svg+xml Автор https://orcid.org/0000-0001-7862-4743

DOI:

https://doi.org/10.18503/2222-9396-2021-11-1-4-17

Ключевые слова:

складская логистика, склад, зелёная логистика, зелёные технологии, многокритериальные методы принятия решений, MCDM, управление цепями поставок, устойчивое развитие

Аннотация

В статье представлен новый подход к выбору зелёных технологий в складской логистике. Предлагается использование многокритериальных методов принятия решений (MCDM). Разработана MCDM модель ранжирования и выбора зелёных технологий, основу которой составляют 15 показателей логистических потоков и 17 инструментов зелёной логистики. Представлен расчётный пример реализации разработанной MCDM модели с использованием 13 методов: DEMATEL, ANP, SAW, TOPSIS, COPRAS, MOORA, ARAS, WASPAS, MAIRCA, EDAS, MABAC, CODAS, MARCOS. Сравнение результатов применения различных MCDM методов показало их высокую сходимость – коэффициент ранговой корреляции Спирмена составил 0.88.

Скачивания

Данные по скачиваниям пока не доступны.

Библиографические ссылки

1. Bartolini M., Bottani E., Grosse E. H. Green warehousing: Systematic literature review and bibliometric analysis // Journal of Cleaner Production. 2019. Т. 226. С. 242-258. https://www.doi.org/10.1016/j.jclepro.2019.04.055.

2. European Outlook 2022: Brought to you by our local experts, the European Outlook provides a high-level summary of our view on the European real estate markets in 2022 [Электронный ресурс]. URL: https://www.knightfrank.com/research/article/2021-12-16-european-outlook-2022.

3. Buntak K., Kovačić M., Mutavdžija M. Internet of things and smart warehouses as the future of logistics // Tehnički glasnik. 2019. Т. 13. № 3. С. 248-253. https://www.doi.org/10.31803/tg-20190215200430.

4. Kamali A. Smart warehouse vs. traditional warehouse: Review // CiiT International Journal of Automation and Autonomous System. 2019. Т. 11. № 1. С. 9-16.

5. Osintsev N., Kazarmshchikova E. Factors of sustainable development of transport and logistics systems // Modern Problems of Russian Transport Complex. 2017. Т. 7. № 1. С. 13-21. https://www.doi.org/10.18503/2222-9396-2017-7-1-13-21.

6. Osintsev N., Rakhmangulov A., Sładkowski A., Dyorina N. Logistic Flow Control System in Green Supply Chains. // Ecology in Transport: Problems and Solutions / A. Sładkowski. Cham: Springer International Publishing, 2020. С. 311-380. https://www.doi.org/10.1007/978-3-030-42323-0_6.

7. Wu K.-J., Tseng M.-L., Vy T. Evaluation the drivers of green supply chain management practices in uncertainty // Procedia - Social and Behavioral Sciences. 2011. Т. 25. С. 384-397. https://www.doi.org/10.1016/j.sbspro.2012.02.049.

8. Popović V., Kilibarda M., Andrejić M., Jereb B., Dragan D. A new sustainable warehouse management approach for workforce and activities scheduling // Sustainability. 2021. Т. 13. № 4. С. 2021. https://www.doi.org/10.3390/su13042021.

9. Wahab S. N., Sayuti N. M., Ab Talib M. S. Antecedents of green warehousing: A theoretical framework and future direction // International Journal of Supply Chain Management. 2018. Т. 7. № 6. С. 382-388.

10. Yener F., Yazgan H. R. Optimal warehouse design: Literature review and case study application // Computers & Industrial Engineering. 2019. Т. 129. № 8. С. 1-13. https://www.doi.org/10.1016/j.cie.2019.01.006.

11. Gu J., Goetschalckx M., McGinnis L. F. Research on warehouse operation: A comprehensive review // European Journal of Operational Research. 2007. Т. 177. № 1. С. 1-21. https://www.doi.org/10.1016/j.ejor.2006.02.025.

12. Carli R., Digiesi S., Dotoli M., Facchini F. A control strategy for smart energy charging of warehouse material handling equipment // Procedia Manufacturing. 2020. Т. 42. С. 503-510.

13. Zajac P. Evaluation Method of Energy Consumption in Logistic Warehouse Systems. Cham: Springer International Publishing, 2015. 158 c. https://www.doi.org/10.1007/978-3-319-22044-4.

14. Freis J., Vohlidka P., Günthner W. Low-Carbon Warehousing: Examining Impacts of Building and Intra-Logistics Design Options on Energy Demand and the CO2 Emissions of Logistics Centers // Sustainability. 2016. Т. 8. № 5. С. 448. https://www.doi.org/10.3390/su8050448.

15. Lewczuk K., Kłodawski M., Gepner P. Energy consumption in a distributional warehouse: A practical case study for different warehouse technologies // Energies. 2021. Т. 14. № 9. С. 2709. https://www.doi.org/10.3390/en14092709.

16. Modica T., Perotti S., Melacini M. Green warehousing: Exploration of organisational variables fostering the adoption of energy-efficient material handling equipment // Sustainability. 2021. Т. 13. № 23. С. 13237. https://www.doi.org/10.3390/su132313237.

17. Darko A., Zhang C., Chan A. P. Drivers for green building: A review of empirical studies // Habitat International. 2017. Т. 60. С. 34-49. https://www.doi.org/10.1016/j.habitatint.2016.12.007.

18. Doan D. T., Ghaffarianhoseini A., Naismith N., Zhang T., Ghaffarianhoseini A., Tookey J. A critical comparison of green building rating systems // Building and Environment. 2017. Т. 123. С. 243-260.

19. Illankoon I. M. C. S., Tam V. W. Y., Le K. N., Tran C. N. N., Ma M. Review on green building rating tools worldwide: recommendations for Australia // JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT. 2019. Т. 25. № 8. С. 831-847. https://www.doi.org/10.3846/jcem.2019.10928.

20. Гнедкова А., Осинцев Н. Выбор "зелёных" стандартов при проектировании складов // Актуальные проблемы современной науки, техники и образования: материалы 78 междунар. науч. техн. конф. 2020. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова. С. 20.

21. Stojčić M., Zavadskas E., Pamučar D., Stević Ž., Mardani A. Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018 // Symmetry. 2019. Т. 11. № 3. С. 350. https://www.doi.org/10.3390/sym11030350.

22. Khan S. A., Chaabane A., Dweiri F. T. Multi-criteria decision-making methods application in supply chain management: A systematic literature review. // Multi-Criteria Methods and Techniques Applied to Supply Chain Management / V. A. P. Salomon. InTech, 2018. https://www.doi.org/10.5772/intechopen.74067.

23. Mardani A., Zavadskas E. K., Khalifah Z., Jusoh A., Nor K. M. D. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature // Transport. 2016. Т. 31. № 3. С. 359-385. https://www.doi.org/10.3846/16484142.2015.1121517.

24. Wątróbski J. Outline of multicriteria decision-making in green logistics // Transportation Research Procedia. 2016. Т. 16. С. 537-552. https://www.doi.org/10.1016/j.trpro.2016.11.051.

25. Özcan T., Çelebi N., Esnaf Ş. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem // Expert Systems with Applications. 2011. Т. 38. № 8. С. 9773-9779. https://www.doi.org/10.1016/j.eswa.2011.02.022.

26. Karmakera C. L., and M. Saha M. Optimization of warehouse location through fuzzy multi-criteria decision making methods // Decision Science Letters. 2015. № 4. С. 315-334.

27. Emeç Ş., Akkaya G. Stochastic AHP and fuzzy VIKOR approach for warehouse location selection problem // Journal of Enterprise Information Management. 2018. Т. 31. № 6. С. 950-962. https://www.doi.org/10.1108/JEIM-12-2016-0195.

28. Dey B., Bairagi B., Sarkar B., Sanyal S. K. A hybrid fuzzy technique for the selection of warehouse location in a supply chain under a utopian environment // International Journal of Management Science and Engineering Management. 2013. Т. 8. № 4. С. 250-261. https://www.doi.org/10.1080/17509653.2013.825075.

29. Alidrisi H. DEA-Based PROMETHEE II Distribution-Center Productivity Model: Evaluation and Location Strategies Formulation // Applied Sciences. 2021. Т. 11. № 20. С. 9567. https://www.doi.org/10.3390/app11209567.

30. Eko Saputro T., Daneshvar Rouyendegh A hybrid approach for selecting material handling equipment in a warehouse // International Journal of Management Science and Engineering Management. 2014. Т. 11. № 1. С. 34-48. https://www.doi.org/10.1080/17509653.2015.1042535.

31. Ulutaş A., Karabasevic D., Popovic G., Stanujkic D., Nguyen P. T., Karaköy Ç. Development of a Novel Integrated CCSD-ITARA-MARCOS Decision-Making Approach for Stackers Selection in a Logistics System // Mathematics. 2020. Т. 8. № 10. С. 1672. https://www.doi.org/10.3390/math8101672.

32. Stojčić M., Stević Ž., Nikolić A., Božičković Z. A multi-criteria model for evaluation and selection of AGV’s in a warehouse // Modern Problems of Russian Transport Complex. 2019. Т. 9. № 1. С. 4-20. https://www.doi.org/10.18503/2222-9396-2019-9-1-4-20.

33. Stević Ž., Stjepanović Ž., Božičković Z., Das D., Stanujkić D. Assessment of conditions for implementing information technology in a warehouse system: A novel fuzzy PIPRECIA method // Symmetry. 2018. Т. 10. № 11. С. 586. https://www.doi.org/10.3390/sym10110586.

34. Osintsev N., Rakhmangulov A., Baginova V. Evaluation of logistic flows in green supply chains based on the combined DEMATEL-ANP method // Facta Universitatis, Series: Mechanical Engineering. 2021. Т. 19. № 3. С. 473-498. https://www.doi.org/10.22190/FUME210505061O.

35. Rakhmangulov A., Sladkowski A., Osintsev N., Muravev D. Green logistics: a system of methods and instruments - part 2 // Naše more. 2018. Т. 65. № 1. С. 49-55. https://www.doi.org/10.17818/NM/2018/1.7.

36. A. Gabus, E. Fontela World problems, an invitation to further thought within the framework of DEMATEL. Geneva, Switzerland: Battelle Geneva Research Centre: Battelle Geneva Research Centre, 1972.

37. Saaty T. L., Vargas L. G. Decision making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. New York, N.Y.: Springer, 2006. МПКТ.95. 278 c.

38. Churchman C. W., Ackoff R. L. An Approximate Measure of Value // Journal of the Operations Research Society of America. 1954. Т. 2. № 2. С. 172-187. https://www.doi.org/10.1287/opre.2.2.172.

39. Hwang C.-L., Yoon K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. МПКТ.186. 1 Online-Ressource (XII, 270 Seiten 1 Illustration).

40. Zavadskas E. K., Kaklauskas A., Sarka V. The new method of multicriteria complex proportional assessment of projects // Technological and Economic Development of Economy. 1994. Т. 1. № 3. С. 131-139.

41. Brauers, W.K.M.; Zavadskas, E.K.: The MOORA method and its application to privatization in a transition economy // Control and Cybernetics. 2006. Т. 35. № 2. 445–469.

42. Zavadskas E. K., Turskis Z. A new additive ratio assessment (ARAS) method in multicriteria decision‐making // Technological and Economic Development of Economy. 2010. Т. 16. № 2. С. 159-172. https://www.doi.org/10.3846/tede.2010.10.

43. Zavadskas E. K., Turskis Z., Antucheviciene J. Optimization of weighted aggregated sum product assessment // Electronics and Electrical Engineering. 2012. Т. 122. № 6. https://www.doi.org/10.5755/j01.eee.122.6.1810.

44. Pamučar D., Vasin L., & Lukovac V. Selection of railway level crossing for investing in security equipment using hybrid DEMATEL-MAIRCA. / Под ред. Dušan Stamenković, Miloš Milošević, Bane. Faculty of Mechanical Engineering. С. 89-92.

45. Keshavarz Ghorabaee M., Zavadskas E. K., OLFAT L., Turskis Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS) // Informatica. 2015. Т. 26. № 3. С. 435-451. https://www.doi.org/10.15388/Informatica.2015.57.

46. Pamučar D., Ćirović G. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC) // Expert Systems with Applications. 2015. Т. 42. № 6. С. 3016-3028. https://www.doi.org/10.1016/j.eswa.2014.11.057.

47. Keshavarz Ghorabaee M., Zavadskas E. K., Turskis Z., Antucheviciene J. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making // Economic Computation & Economic Cybernetics Studies & Research. 2016. Т. 50. № 3. С. 25-44.

48. Stević Ž., Pamučar D., Puška A., Chatterjee P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS) // Computers & Industrial Engineering. 2020. Т. 140. С. 106231. https://www.doi.org/10.1016/j.cie.2019.106231.

Результаты ранжирования инструментов зелёной логистики различными MCDM методами

Загрузки

Опубликован

30-12-2021

Как цитировать

Выбор зелёных технологий в складской логистике – многокритериальный подход. (2021). Недропользование и транспортные системы, 11(1), 4-17. https://doi.org/10.18503/2222-9396-2021-11-1-4-17

Похожие статьи

1-10 из 19

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Наиболее читаемые статьи этого автора (авторов)